March 09, 2021 Volume 17 Issue 10

Electrical/Electronic News & Products

Designfax weekly eMagazine

Subscribe Today!
image of Designfax newsletter

Archives

View Archives

Partners

Manufacturing Center
Product Spotlight

Modern Applications News
Metalworking Ideas For
Today's Job Shops

Tooling and Production
Strategies for large
metalworking plants

What is a Heatric Printed Circuit Heat Exchanger?

According to Parker Hannifin, "A Printed Circuit Heat Exchanger is a robust, corrosion-resistant, high-integrity plate-type heat exchanger manufactured using diffusion bonding." Learn about the technology and why Heatric, a Parker brand, "can manufacture a unit up to 85% smaller and lighter than traditional technologies such as shell and tube heat exchangers."
Read this informative Parker blog.


Tech Tip: Mastering sheet metal bend calculations in Onshape

Mastering bend calculations in sheet metal design is a key skill that can impact the accuracy and manufactur-ability of your designs significantly. Explore the various options available to become a pro in this Onshape Tech Tip: K Factor, bend allowance, and bend deduction, with guidance on when each should be used. You may learn something even if you don't use this software.
Read the Onshape blog.


Seifert thermoelectric enclosure coolers from AutomationDirect beat the heat

Automation-Direct has added new high-quality and efficient stainless steel Seifert 340 BTU/H thermoelectric coolers with 120-V and 230-V power options. Thermoelectric coolers from Seifert use the Peltier Effect to create a temperature difference between the internal and ambient heat sinks, making internal air cooler while dissipating heat into the external environment. Fans assist the convective heat transfer from the heat sinks, which are optimized for maximum flow.
Learn more.


Raspberry Pi Pico 2: Microcontroller board with 2x flash memory

Raspberry Pi's Pico low-cost, high-performance microcontroller board with flexible digital interfaces is now being offered as a full second-generation product, complete with twice the on-board flash memory, higher performance, lower power consumption, and greater security.
Read the full article.


Free-Core vs. Spring-Loaded LVDT position sensors

Linear Variable Differential Transformers are electro-mechanical devices used in many industrial applications to measure the displacement or position of an object. They convert the linear position or motion of a measured object into an electrical output that is displayed on a local readout or input into a programmable logic controller as part of an automated process control system. LVDTs come in two core configurations -- free-core and spring-loaded -- but do you know what the differences are?
Read the full NewTek Sensor Solutions article.


New sensor listens to fuel for optimum marine diesel engine performance

Condition monitoring expert CM Technologies has added a fuel injection acoustic emission sensor to its proprietary PREMET X range of two- and four-stroke diesel engine performance indicators for marine use. The device allows engineers to monitor the acoustic signature of a diesel engine's fuel injection system to detect any problems with fuel injectors, nozzles, and pumps.
Read the full article.


Application Note: Quadcopter propeller torque/thrust testing

The quadcopter's four propellers are designed to work in conjunction with each other to ensure there are no torque imbalances that could send the vehicle spinning out of control. But just how would a professional developer or hobbyist perform accurate propeller torque and thrust testing? Advanced sensor expert FUTEK has the answer.
Read the full article.


New enclosure heat exchanger options

Automation-Direct has added new Saginaw Enviro-Therm® air-to-air heat exchangers that use an enclosure's ambient air and either heat pipes or aluminum plate to transfer heat from inside the enclosure to the external environment. Since the ambient air is the cooling medium, the need for refrigerant is eliminated. Features include corrosion-resistant internal components, a filterless design for maximum cooling and reduced clogging, simple installation, and a programmable digital controller.
Learn more.


World's smallest-width floating connector simplifies automotive installation

Hirose has developed a space-saving, board-to-board connector that combines floating functionality and miniature size to meet automotive specifications. The BM54 Series boasts the world's smallest-width class for its category, a 0.4-mm pitch, and a stacking height of 3.0 to 4.5 mm. This connector is ideal for PCBs with multiple connector sets and offers a wide floating range of +/- 0.4 mm in the XY direction. By absorbing board misalignment errors, floating simplifies assembly and improves assembly work efficiency. Applications include cameras, displays, millimeter wave radar, and LiDAR systems.
Learn more.


Test equipment advancing to meet rapidly changing market needs

Although the rise of the IoT, 5G, and advanced automotive electronics markets is instigating rapid changes in technology, test equipment is keeping pace, and not just in extensions to bandwidth specifications or signal resolution. Maureen Lipps, Multicomp Pro Private Label Product Segment Leader, Test and Tools, Newark Electronics, runs through important advances in the industry and its tools.
Read the full article.


Smallest rugged AI supercomputer for avionics

Aitech Systems has released the A178-AV, the latest iteration of its smallest rugged GPGPU AI super-computers available with the powerful NVIDIA Jetson AGX Xavier System-on-Module. With its compact size, the A178-AV is the most advanced solution for artificial intelligence (AI), deep learning, and video and signal processing for next-gen avionic platforms.
Learn more.


Touchless angle sensors get CAN SAE J1939 interface

Novotechnik has added the CAN J1939 interface (developed for heavy-duty vehicles) to its RFC4800 Series of touchless angle sensors measuring angular position up to 360°, turn direction, turns, speed, and operational status. It can provide one or two output channels. It has a longer life and robustness than an optical encoder. It can signal if a sensor needs replacing or average a programmable number of values to output to reduce external noise if present. This is wear-free angle measurement made easy.
Learn more.


Radar level sensor monitors liquids and powders

The innovative FR Series non-contact radar level sensor from Keyence has been designed to monitor the level of both liquid and powder in any environment. This sensor features short- and long-range models, as well as chemical and sanitary options to address a wide array of level sensing applications. Works even when obstructions or harsh conditions are present, such as build-up, steam, or turbulence.
Learn more.


Raspberry Pi launches $70 AI Kit

Artificial intelligence (AI) is all the rage, and the makers of Raspberry Pi have created a way for enthusiasts of the single-board computer systems to take part and do a lot of experimenting along the way.
Read the full article.


3D model sharing at Brother Industries cuts rework

When Brother Industries, maker of printers, computers, and computer-related electronics, deployed Lattice Technology's XVL Player as a viewer for sharing 3D models throughout the processes of product design, parts design, mold design, mold production, and QA of molded parts, they reduced rework significantly -- especially from downstream departments. XVL Studio with its Difference Check Option helped address the rework in mold design, for example, by always keeping everyone informed of design changes.
Read this real-world case study.


10X faster than USB: New data transfer system connects silicon chips with ultra-thin cable

Researchers have developed a data transfer system that pairs high-frequency silicon chips with a polymer cable as thin a strand of hair. [Image: Courtesy of the researchers]

 

 

 

 

By Daniel Ackerman, MIT

Researchers have developed a data transfer system that can transmit information 10 times faster than a USB. The new link pairs high-frequency silicon chips with a polymer cable as thin a strand of hair. The system may one day boost energy efficiency in data centers and lighten the loads of electronics-rich spacecraft.

The research was presented at February's IEEE International Solid-State Circuits Conference. The lead author is MIT's Jack Holloway '03, MNG '04, who completed his PhD in MIT's Department of Electrical Engineering and Computer Science (EECS) last fall and currently works for Raytheon. Co-authors include Ruonan Han, associate professor and Holloway's PhD adviser in EECS, and Georgios Dogiamis, a senior researcher at Intel.

The need for snappy data exchange is clear, especially in an era of remote work. "There's an explosion in the amount of information being shared between computer chips -- cloud computing, the internet, big data. And a lot of this happens over conventional copper wire," says Holloway. But copper wires, like those found in USB or HDMI cables, are power-hungry -- especially when dealing with heavy data loads. "There's a fundamental tradeoff between the amount of energy burned and the rate of information exchanged." Despite a growing demand for fast data transmission (beyond 100 gigabits per second) through conduits longer than a meter, Holloway says the typical solution has been "increasingly bulky and costly" copper cables.

One alternative to copper wire is fiber-optic cable, though that has its own problems. Whereas copper wires use electrical signaling, fiber optics uses photons. That allows fiber optics to transmit data quickly and with little energy dissipation. But silicon computer chips generally don't play well with photons, making interconnections between fiber-optic cables and computers a challenge. "There's currently no way to efficiently generate, amplify, or detect photons in silicon," says Holloway. "There are all kinds of expensive and complex integration schemes, but from an economics perspective, it's not a great solution." So, the researchers developed their own.

The team's new link draws on benefits of both copper and fiber-optic conduits, while ditching their drawbacks. "It's a great example of a complementary solution," says Dogiamis. Their conduit is made of plastic polymer, so it's lighter and potentially cheaper to manufacture than traditional copper cables. But when the polymer link is operated with sub-terahertz electromagnetic signals, it's far more energy efficient than copper in transmitting a high data load. The new link's efficiency rivals that of fiber optic, but it has a key advantage: "It's compatible directly with silicon chips, without any special manufacturing," says Holloway.

The team engineered such low-cost chips to pair with the polymer conduit. Typically, silicon chips struggle to operate at sub-terahertz frequencies. Yet the team's new chips generate those high-frequency signals with enough power to transmit data directly into the conduit. That clean connection from the silicon chips to the conduit means the overall system can be manufactured with standard, cost-effective methods, the researchers say.

The new link also beats out copper in terms of size. "The cross-sectional area of our cable is 0.4 millimeters by a quarter millimeter," says Han. "So, it's super tiny, like a strand of hair." Despite its slim size, it can carry a hefty load of data, since it sends signals over three different parallel channels, separated by frequency. The link's total bandwidth is 105 gigabits per second, nearly an order of magnitude faster than a copper-based USB cable. Dogiamis says the cable could "address the bandwidth challenges, as we see this megatrend toward more and more data."

In future work, Han hopes to make the polymer conduits even faster by bundling them together. "Then the data rate will be off the charts," he says. "It could be one terabit per second, still at low cost."

The researchers suggest "data-dense" applications, like server farms, could be early adopters of the new links, since they could dramatically cut data centers' high energy demands. The link could also be a key solution for the aerospace and automotive industries, which place a premium on small, light devices. One day, the link could replace the consumer electronic cables in homes and offices, thanks to the link's simplicity and speed. "It's far less costly than [copper or fiber-optic] approaches, with significantly wider bandwidth and lower loss than conventional copper solutions," says Holloway. "So, high fives all round."

This research was funded, in part, by Intel, Raytheon, the Naval Research Laboratory, and the Office of Naval Research.

Published March 2021

Rate this article

[10X faster than USB: New data transfer system connects silicon chips with ultra-thin cable]

Very interesting, with information I can use
Interesting, with information I may use
Interesting, but not applicable to my operation
Not interesting or inaccurate

E-mail Address (required):

Comments:


Type the number:



Copyright © 2021 by Nelson Publishing, Inc. All rights reserved. Reproduction Prohibited.
View our terms of use and privacy policy